The goal of radiation treatment is to irradiate cancer cells (i.e., a target region) without destroying adjacent healthy tissue. Thus, it is advantageous to form the beam so that it best approximates the target, thereby reducing the amount of dose absorbed in critical regions outside the target area. While multi-leaf collimators are common in human clinical systems, small animal radiotherapy systems are typically limited to a set of fixed-size collimators. For these systems, dose painting can be used for conformal dose delivery, but is significantly slower than a multi-leaf collimator. As a compromise solution, a variable rectangular collimator has been developed for the Small Animal Radiation Research Platform (SARRP). This enables more efficient dose painting via the decomposition of a 2D target region into a minimum number of rectangles of variable size, which is the topic of this paper. The proposed method consists of several distinct steps and was implemented on the SARRP Treatment Planning System (TPS).
Cho N., Wong J., Kazanzides P.
Download Paper
SARRP
An integrated x-ray/optical tomography system for pre-clinical radiation research.
The current Small Animal Radiation Research Platform (SARRP) is poor for localizing small soft tissue targets for irradiation or tumor models growing in a soft tissue environment. Therefore, an imaging method complementary to x-ray CT is required to localize the soft tissue target’s Center of Mass (CoM) to within 1 mm. In this paper, we report the development of an integrated x-ray/bioluminescence imaging/tomography (BLI/BLT) system to provide a pre-clinical, high resolution irradiation system. This system can be used to study radiation effects in small animals under the conebeam computed tomography (CBCT) imaging guidance by adding the bioluminescence imaging (BLI) system as a standalone system which can also be docked onto the SARRP. The proposed system integrates two robotic rotating stages and an x-ray source rated at maximum 130 kVp and having a small variable focal spot. A high performance and low noise CCD camera mounted in a light-tight housing along with an optical filter assembly is used for multiwavelength BL imaging and tomography. A three-mirror arrangement is implemented to eliminate the need of rotating the CCD camera for acquiring multiple views. The mirror system is attached to a motorized stage to capture images in angles between 0-90o (for the standalone system). C
S. Eslami ; Y. Yang ; J. Wong ; M. S. Patterson ; I. Iordachita
Download Paper
Accuracy of off-line bioluminescence imaging to localize targets in preclinical radiation research
In this study, we investigated the accuracy of using off-line bioluminescence imaging (BLI) and tomography (BLT) to guide irradiation of small soft tissue targets on a small animal radiation research platform (SARRP) with on-board cone beam CT (CBCT) capability. A...
A multipurpose quality assurance phantom for the small animal radiation research platform (SARRP).
In this work, the suitability and performance of a mouse-size MOSFET (Mousefet) phantom is investigated for routine quality assurance (QA) of the small animal radiation research platform (SARRP). This Mousefet phantom is a simple construction consisting of five micro-MOSFETS custom integrated in a quincunx pattern within a tissue-equivalent phantom, allowing repeat/multiple QA tasks to be quickly performed in one experimental set-up. The Mousefet phantom is particularly evaluated for facilitating SARRP QA tasks which may warrant daily evaluation, including output constancy, isocenter congruency test and cone beam computed tomography (CBCT) image geometric accuracy. Results for the output constancy measurements showed a maximum daily variation of less than 2.6% for all MOSFETS, in consonance with observations from concurrent ion chamber measurements. It is also shown that the design of the Mousefet phantom allows the output check data to be used for prompt verification of beam energy and cone profile constancy. For the isocenter congruency test, it is demonstrated that the Mousefet phantom can detect 0.3 mm deviations of the CBCT isocenter from the radiation isocenter. Meanwhile, results for CBCT image geometric accuracy were consistently found to be within 2% of the expected value. Other CBCT image quality parameters could also be assessed in terms of image intensity constancy, noise and image uniformity. Overall, the results establish the Mousefet phantom as a simple and time-efficient multipurpose tool that could be employed effectively for routine QA of the SARRP.
Ngwa W, Tsiamas P, Zygmanski P, Makrigiorgos GM, Berbeco RI.
Download Paper
A Treatment Planning System for the Small Animal Radiation Research Platform (SARRP) based on 3D Slicer
This paper describes the software integration of a treatment planning system (TPS), based on the open-source 3D Slicer package, with the Small Animal Radiation Research Platform (SARRP).The TPS is designed to enable researchers to replicate their clinical techniques,...
A multipurpose quality assurance phantom for the small animal radiation research platform (SARRP)
In this work, the suitability and performance of a mouse-size MOSFET (Mousefet) phantom is investigated for routine quality assurance (QA) of the small animal radiation research platform (SARRP). This Mousefet phantom is a simple construction consisting of five...
Development of a novel preclinical pancreatic cancer research model: bioluminescence image-guided focal irradiation and tumor monitoring of orthotopic xenografts.
PURPOSE: We report on a novel preclinical pancreatic cancer research model that uses bioluminescence imaging (BLI)-guided irradiation of orthotopic xenograft tumors, sparing of surrounding normal tissues, and quantitative, noninvasive longitudinal assessment of...
MOSFET assessment of radiation dose delivered to mice using the Small Animal Radiation Research Platform (SARRP)
The Small Animal Radiation Research Platform (SARRP) is a novel isocentric irradiation system that enables state-of-the-art image-guided radiotherapy research to be performed with animal models. This paper reports the results obtained from investigations assessing the...
Robotic Delivery of Complex Radiation Volumes for Small Animal Research
The Small Animal Radiation Research Platform (SARRP) is a novel and complete system capable of delivering multidirectional (focal), kilo-voltage radiation fields to targets in small animals under robotic control using cone-beam CT (CBCT) image guidance. The capability...