PURPOSE: To develop and test the suitability and performance of a comprehensive quality assurance (QA) phantom for the Small Animal Radiation Research Platform (SARRP). METHODS AND MATERIALS: A QA phantom was developed for carrying out daily, monthly and annual QA...
Research Systems
Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research
PURPOSE: The cone beam computed tomography (CBCT) guided small animal radiation research platform (SARRP) has been developed for focal tumor irradiation, allowing laboratory researchers to test basic biological hypotheses that can modify radiotherapy outcomes in ways...
MRI-Only Based Radiotherapy Treatment Planning for the Rat Brain on a Small Animal Radiation Research Platform (SARRP).
Computed tomography (CT) is the standard imaging modality in radiation therapy treatment planning (RTP). However, magnetic resonance (MR) imaging provides superior soft tissue contrast, increasing the precision of target volume selection. We present MR-only based RTP for a rat brain on a small animal radiation research platform (SARRP) using probabilistic voxel classification with multiple MR sequences. Six rat heads were imaged, each with one CT and five MR sequences. The MR sequences were: T1-weighted, T2-weighted, zero-echo time (ZTE), and two ultra-short echo time sequences with 20 μs (UTE1) and 2 ms (UTE2) echo times. CT data were manually segmented into air, soft tissue, and bone to obtain the RTP reference. Bias field corrected MR images were automatically segmented into the same tissue classes using a fuzzy c-means segmentation algorithm with multiple images as input. Similarities between segmented CT and automatic segmented MR (ASMR) images were evaluated using Dice coefficient. Three ASMR images with high similarity index were used for further RTP. Three beam arrangements were investigated. Dose distributions were compared by analysing dose volume histograms. The highest Dice coefficients were obtained for the ZTE-UTE2 combination and for the T1-UTE1-T2 combination when ZTE was unavailable. Both combinations, along with UTE1-UTE2, often used to generate ASMR images, were used for further RTP. Using 1 beam, MR based RTP underestimated the dose to be delivered to the target (range: 1.4%-7.6%). When more complex beam configurations were used, the calculated dose using the ZTE-UTE2 combination was the most accurate, with 0.7% deviation from CT, compared to 0.8% for T1-UTE1-T2 and 1.7% for UTE1-UTE2. The presented MR-only based workflow for RTP on a SARRP enables both accurate organ delineation and dose calculations using multiple MR sequences. This method can be useful in longitudinal studies where CT’s cumulative radiation dose might contribute to the total dose.
Shandra Gutierrez, Benedicte Descamps, Christian Vanhove
Download Paper
Stereotactic Radiation Therapy Augments Antigen-Specific PD-1-Mediated Antitumor Immune Responses via Cross-Presentation of Tumor Antigen
The immune-modulating effects of radiotherapy (XRT) have gained considerable interest recently, and there have been multiple reports of synergy between XRT and immunotherapy. However, additional preclinical studies are needed to demonstrate the antigen-specific nature...
Bioluminescence Tomography-Guided Radiation Therapy for Preclinical Research.
In preclinical radiation research, it is challenging to localize soft tissue targets based on cone beam computed tomography (CBCT) guidance. As a more effective method to localize soft tissue targets, we developed an online bioluminescence tomography (BLT) system for small-animal radiation research platform (SARRP). We demonstrated BLT-guided radiation therapy and validated targeting accuracy based on a newly developed reconstruction algorithm.
Zhang B, Wang KK, Yu J, Eslami S, Iordachita I, Reyes J, Malek R, Tran PT, Patterson MS, Wong JW.
Download Paper
MRI-guided 3D conformal arc micro-irradiation of a F98 glioblastoma rat model using the Small Animal Radiation Research Platform (SARRP).
Current glioblastoma (GB) small animal models for cranial radiation therapy (RT) use simple single beam technologies, which differ from the advanced conformal image-guided radiation techniques used in clinical practice. This technological disparity presents a major disadvantage for the development of new therapeutic approaches. Hence, we established a F98 GB rat model using magnetic resonance imaging (MRI)-guided three-dimensional (3D)-conformal arc RT with the Small Animal Radiation Research Platform (SARRP). Ten Fischer rats were inoculated with F98 tumor cells. When the tumor reached a volume of approximately 27 mm(3) on T2-weighted MR images, the animals were randomized into a treatment group (n = 5) receiving RT and concomitant temozolomide, and a sham group (n = 5) receiving control injections. For the treated animals, contrast-enhanced T1-weighted MR images were acquired followed by a cone-beam computed tomography (CBCT) on the SARRP system. Both scans were co-registered; MRI was used to define the target whereas CBCT was used for calculating a dose plan (20 Gy, three non-coplanar arc beams, 3 × 3 mm collimator). Tumor volumes were evaluated on follow-up contrast-enhanced T1-weighted MR images. Verification of treatment accuracy with γH2AX immunohistochemical staining was performed. Tumors in the control animals showed rapid proliferation during follow-up, encompassing almost the entire right cerebral hemisphere at day 12-15. Treated animals showed no significant tumor growth from 2 to 9 days post RT. γH2AX results confirmed the accuracy of dose delivery. This model, which is quite similar to the approach in the clinic, is valid for combined RT and chemotherapy of GB in rats.
Bolcaen J, Descamps B, Deblaere K, Boterberg T, Hallaert G, Van den Broecke C, Decrock E, Vral A, Leybaert L, Vanhove C, Goethals I.
Download Paper
Positron Emission Tomography for Pre-Clinical Sub-Volume Dose Escalation
PURPOSE: This dissertation focuses on establishment of pre-clinical methods facilitating the use of PET imaging for selective sub-volume dose escalation. Specifically the problems addressed are 1.) The difficulties associated with comparing multiple PET images, 2.)...
PTH1-34 Alleviates Radiotherapy-induced Local Bone Loss by Improving Osteoblast and Osteocyte Survival
Cancer radiotherapy is often complicated by a spectrum of changes in the neighboring bone from mild osteopenia to osteoradionecrosis. We previously reported that parathyroid hormone (PTH, 1–34), an anabolic agent for osteoporosis, reversed bone structural...
Dose Painting with a Variable Collimator with the Small Animal Radiation Research Platform (SARRP).
The goal of radiation treatment is to irradiate cancer cells (i.e., a target region) without destroying adjacent healthy tissue. Thus, it is advantageous to form the beam so that it best approximates the target, thereby reducing the amount of dose absorbed in critical regions outside the target area. While multi-leaf collimators are common in human clinical systems, small animal radiotherapy systems are typically limited to a set of fixed-size collimators. For these systems, dose painting can be used for conformal dose delivery, but is significantly slower than a multi-leaf collimator. As a compromise solution, a variable rectangular collimator has been developed for the Small Animal Radiation Research Platform (SARRP). This enables more efficient dose painting via the decomposition of a 2D target region into a minimum number of rectangles of variable size, which is the topic of this paper. The proposed method consists of several distinct steps and was implemented on the SARRP Treatment Planning System (TPS).
Cho N., Wong J., Kazanzides P.
Download Paper