BACKGROUND: Gynecomastia is a frequent side effect of antiandrogen therapy for prostate cancer and may compromise quality of life. Although it has been successfully treated with radiotherapy (RT) for decades, the priority of RT as a preferred treatment option has...
Area of Interest
Acid Sphingomyelinase Is Required for Protection of Effector Memory T Cells against Glucocorticoid-Induced Cell Death.
The activity of acid sphingomyelinase (aSMase) was previously reported to be involved in glucocorticoid-induced cell death (GICD) of T lymphocytes. This mechanism in turn is believed to contribute to the therapeutic efficacy of glucocorticoids (GCs) in the treatment of inflammatory diseases. In this study, we reassessed the role of aSMase in GICD by using aSMase knockout mice. The absence of aSMase largely abolished the partial protection that effector memory CD4+ T cells in wild-type mice possess against GICD. Reduced IL-2 secretion by aSMase-deficient CD4+ T cells suggested that a lack of this important survival factor might be the cause of these cells’ enhanced susceptibility to GICD. Indeed, addition of IL-2 restored the protection against GICD, whereas neutralization of IL-2 abrogated the otherwise protective effect seen in wild-type effector memory CD4+ T cells. The therapeutic implications of the altered sensitivity of aSMase-deficient T cells to GICD were assessed in models of inflammatory disorders; namely, experimental autoimmune encephalomyelitis and acute graft-versus-host disease. Surprisingly, GC treatment was equally efficient in both models in terms of ameliorating the diseases, regardless of the genotype of the T cells. Thus, our data reveal a hitherto unrecognized contribution of aSMase to the sensitivity of effector memory CD4+ T cells to GICD and call into question the traditionally attributed importance of GICD of T cells to the treatment of inflammatory diseases by GCs.
Denise Tischner, Jennifer Theiss, Anna Karabinskaya, Jens van den Brandt, Sybille D Reichardt, Ulrike Karow, Marco J Herold, Fred Lühder, Olaf Utermöhlen, and Holger M Reichardt
Download Paper
Caspase-2 is required for DNA damage-induced expression of the CDK inhibitor p21WAF1/CIP1. Available from:
Although caspase-2 represents the most conserved caspase across species and was the second caspase identified, its precise function remains enigmatic. In several cell types we show that knockdown of caspase-2 specifically impaired DNA damage-induced p21 expression, whereas overexpression of a caspase-2 mutant increased p21 levels. Caspase-2 did not influence p21 mRNA transcription; moreover, various inhibitors targeting proteasomal or non-proteasomal proteases, including caspases, could not restore p21 protein levels following knockdown of caspase-2. As, however, silencing of caspase-2 impaired exogenous expression of p21 constructs containing 3′-UTR sequences, our results strongly indicate that caspase-2 regulates p21 expression at the translational level. Intriguingly, unlike depletion of caspase-2, which prevented p21 expression and thereby reverted the γ-IR-induced senescent phenotype of wild-type HCT116 colon carcinoma cells into apoptosis, knockdown of none of the caspase-2-interacting components RAIDD, RIP or DNA-PKcs was able to mimic these processes. Together, our data suggest that this novel role of caspase-2 as a translational regulator of p21 expression occurs not only independently of its enzymatic activity but also does not require known caspase-2-activating platforms.
Academic paper: Caspase-2 is required for DNA damage-induced expression of the CDK inhibitor p21WAF1/CIP1. Available from: https://www.researchgate.net/publication/51034476_Caspase-2_is_required_for_DNA_damage-induced_expression_of_the_CDK_inhibitor_p21WAF1CIP1 [accessed May 2, 2017].
D Sohn, W Budach and R U Jänicke
Download Paper
MOSFET assessment of radiation dose delivered to mice using the Small Animal Radiation Research Platform (SARRP)
The Small Animal Radiation Research Platform (SARRP) is a novel isocentric irradiation system that enables state-of-the-art image-guided radiotherapy research to be performed with animal models. This paper reports the results obtained from investigations assessing the...
5-Year Review of a Unique Multidisciplinary Nonmelanoma Skin Cancer Clinic
BACKGROUND: A multidisciplinary nonmelanoma skin cancer (NMSC) clinic is held weekly at our center, where all new patients are jointly assessed by dermatology/dermatopathology, radiation oncology, and plastic surgery. A new patient database was established in 2004....
Conjunctival-corneal intraepithelial neoplasia (Bowen disease) treated with orthovoltag
PURPOSE: To report an exceptionally large conjunctival-corneal intraepithelial neoplasia (CCIN) (Bowen disease), for which the size of the tumor made classical treatment difficult, and to highlight the role of orthovoltage as an alternative treatment mode with good...
A radiobiological analysis of multicenter data for postoperative keloid radiotherapy
PURPOSE: To identify factors significantly affecting recurrence rates after postoperative external beam radiotherapy (XRT) of keloids, and to delineate any radiation dose response and effects of radiation dose per fraction. METHODS AND MATERIALS: A comprehensive...
Impact of oncogenic K-RAS on YB-1 phosphorylation induced by ionizing radiation.
Expression of Y-box binding protein-1 (YB-1) is associated with tumor progression and drug resistance. Phosphorylation of YB-1 at serine residue 102 (S102) in response to growth factors is required for its transcriptional activity and is thought to be regulated by cytoplasmic signaling phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways. These pathways can be activated by growth factors and by exposure to ionizing radiation (IR). So far, however, no studies have been conducted on IR-induced YB-1 phosphorylation.
Mahmoud Toulany, Tim-Andre Schickfluß, Wolfgang Eicheler, Rainer Kehlbach, Birgit Schittek and H Peter Rodemann
Download Paper
A radiotherapy technique to limit dose to neural progenitor cell niches without compromising tumor coverage
Radiation therapy (RT) for brain tumors is associated with neurocognitive toxicity which may be a result of damage to neural progenitor cells (NPCs). We present a novel technique to limit the radiation dose to NPC without compromising tumor coverage. A study was...